Parallel centerline extraction on the GPU

نویسندگان

  • Baoquan Liu
  • Alexandru Telea
  • Jos B. T. M. Roerdink
  • Gordon Clapworthy
  • David Williams
  • Po Yang
  • Feng Dong
  • Valeriu Codreanu
  • Alessandro Chiarini
چکیده

Centerline extraction is important in a variety of visualization applications including shape analysis, geometry processing, and virtual endoscopy. Centerlines allow accurate measurements of length along winding tubular structures, assist automatic virtual navigation, and provide a path-planning system to control the movement and orientation of a virtual camera. However, efficiently computing centerlines with the desired accuracy has been a major challenge. Existing centerline methods are either not fast enough or not accurate enough for interactive application to complex 3D shapes. Some methods based on distance mapping are accurate, but these are sequential algorithms which have limited performance when running on the CPU. To our knowledge, there is no accurate parallel centerline algorithm that can take advantage of modern many-core parallel computing resources, such as GPUs, to perform automatic centerline extraction from large data volumes at interactive speed and with high accuracy. In this paper, we present a new parallel centerline extraction algorithm suitable for implementation on a GPU to produce highly accurate, 26-connected, one-voxel-thick centerlines at interactive speed. The resulting centerlines are as accurate as those produced by a state-of-the-art sequential CPU method [40], while being computed hundreds of times faster. Applications to fly-through path planning and virtual endoscopy are discussed. Experimental results demonstrating centeredness, robustness and efficiency are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Isolated Persian/Arabic handwriting characters: Derivative projection profile features, implemented on GPUs

For many years, researchers have studied high accuracy methods for recognizing the handwriting and achieved many significant improvements. However, an issue that has rarely been studied is the speed of these methods. Considering the computer hardware limitations, it is necessary for these methods to run in high speed. One of the methods to increase the processing speed is to use the computer pa...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Parallelization of Rich Models for Steganalysis of Digital Images using a CUDA-based Approach

There are several different methods to make an efficient strategy for steganalysis of digital images. A very powerful method in this area is rich model consisting of a large number of diverse sub-models in both spatial and transform domain that should be utilized. However, the extraction of a various types of features from an image is so time consuming in some steps, especially for training pha...

متن کامل

GPU-Based Airway Segmentation and Centerline Extraction for Image Guided Bronchoscopy

Bronchoscopy is an important minimal-invasive procedure for both diagnosis and therapy of several lung disorders, including lung cancer. However, narrow airways and complex branching structure increases the difficulty of navigating to the target site inside the lungs. It is possible to improve navigation by extracting a map of the airways from CT images and tracking the tip of the bronchoscope....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Graphics

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2014